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Abstract-The present paper deals with the sensitivity analysis of bolted steel column-to-column
connections, by taking into account the development of separation phenomena on the joint endpla­
tes. A variational inequality and quadratic programming approach is first proposed to the inves­
tigation of the separation problem on such bolted steel connections. Applying the classical unilateral
contact law to describe in a quasi-static way the separation process along the surface between the
splice plates, the continuous problem can be formulated either as a variational inequality or
equivalently as a quadratic programming problem. Then, by means of an appropriate finite element
discretization scheme, the discrete problem is formulated as a quadratic optimization problem with
inequality constraints. In order to investigate the variation of the structural response of the con­
nection under consideration due to the variation ofcritical design parameters, the sensitivity analysis
problem is formulated; the latter is a quadratic programming problem where design parameters
appear only in the quadratic term. This problem can be effectively treated numerically by means of
an appropriate quadratic optimization algorithm. The applicability and the effectiveness of the
method are illustrated by means of two numerical applications.

I. INTRODUCTION

Bolted plate connections are used in structural steelwork to transmit internal forces between
adjacent structural elements. Such joints applied for instance as column-to-base, column­
to-column and beam-to-column connections are nowadays extensively used in any possible
combination in steel structures. It is therefore, obvious that any improvement on the
analysis ofsuch connections would ameliorate the existing design and safety criteria dictated
by steel construction codes,

Classical methods for the analysis and design of bolted steel connections often disregard
splice plates' deformability by assuming "complete contact" between the splice plates, The
structural behaviour of steel connections is in this case investigated a priori, using the
aforementioned hypothesis of complete contact between the bolted steel endplates. A direct
result of the latter assumption is that compression forces are absorbed by the plates in
contact, whereas possible tension forces are transmitted by the bolts, However, due to the
contradition between the previously mentioned simplifying assumption of complete contact
between the splice plates and the evidence gained by laboratory testing and structural
steelwork practice, the problem under investigation attracted the interest of a plethora of
researchers working on this subject, either theoretically/numerically or experimentally (see
e.g. Kato and McGuire, 1973; Paker and Morris, 1977; Chen and Patel, 1981; Raffa and
Strona, 1984; Thomopoulos, 1985; Chen and Lui, 1986), In these studies, both the finite
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element and the boundary element methods among others have been applied to the simu­
lation of the structural behaviour of steel column connections. A result of these studies was
the ascertainment of the appearance of detachment (i.e. separation) phenomena on the
adjacent froms of the bolted endplates. Since the aforementioned phenomenon is of non­
linear nature and the contact or separation zones on the steel endplates are not a priori
known, the application of the classical structural analysis methods to solve the problem at
hand may lead to erroneous results and must therefore be used with care. Among the
models recently proposed to simulate the response of steel connections, those combining the
method. of nonsmooth mechanics (Panagiotopoulos, 1985; Moreau and Panagiotopoulos,
1988; and Moreau et al., 1988) with finite element discretization schemes are worth men­
tioning here (cf. e.g. Abdalla, 1988; Abdalla and Stavroulakis, 1989; Baniotopoulos et
aI., 1992; and Baniotopoulos and Abdalla, 1993). Applying such simulation models, the
additional high nonlinearity produced by the development of the separation phenomenon
can be taken into account as well. Within such a theoretical framework, the problem at
hand can be studied by taking into account the possibility ofdevelopment oflocal separation
phenomena on the connection endplates. In particular, these separation phenomena can be
completely described mathematically in both static and dynamic problems by the Signorini
unilateral contact law, theoretically investigated by Fichera (1972); such an approach leads
to a variational inequality or equivalently to a quadratic programming formulation of the
problem. Indeed, variational inequalities take into account the exact nature of the unilateral
contact nonlinearity. Such a treatment of the problem has, among others, both the advan­
tages of exact determination of the active contact and separation zones between the contact
fronts, and of exact evaluation of the loss of strength of the bolted steel plate connection
due to the development of the separation phenomenon for a given loading (without any
incremental procedure).

Concerning the theoretical treatment of the problem, the continuous problem being a
typical boundary value problem (RV.P.) is first formulated as a variational inequality
problem with respect to displacements which express, from the standpoint of mechanics,
the principle of virtual work in inequality form for the steel connection at the state of
equilibrium. Such a formulation permits the derivation of the principle of minimum poten­
tial energy of the steel connection at the state of equilibrium in the form of a quadratic
optimization problem, which involves a quadratic energy function coupled by inequality
kinematic constraints (cf. e.g. Maier, 1968, 1973, and Panagiotopoulos, 1975, 1976). Apply­
ing an appropriately chosen finite element discretization scheme, the formulated problem
can be equivalently put in the form of a discrete quadratic optimization problem. It is
worth noting that the latter formulation seems very convenient because numerous quadratic
optimization algorithms are nowadays available for the numerical treatment ofthe problem.
It is also worth noting that a dual approach can also be employed to the mathematical
formulation of the problem under consideration. In this case, the variational inequality
problem with respect to stresses expresses, from the standpoint of mechanics, the principle
ofcomplementary virtual work in inequality form and the respective quadratic optimization
problem, the principle of minimum complementary energy for the steel connection at the
state of equilibrium.

In order to obtain sensitivity analysis results of the structural response of such steel
connections, the unified approach for sensitivity analyses of unilateral problems for discrete
and continuous elastic structures proposed by Bendsoe et ai. (1985) is herein applied.
Within this theoretical framework, directional derivatives with respect to variations of the
variables appearing in the quadratic term of a similar quadratic optimization problem have
to be defined. By means of such an analysis, the influence of small variations of the design
parameters, as is for example the splice plate thickness, to the overall structural response
of the column splices can be investigated. As shown by Bendsoe and Sokolowski (1988),
this problem is similar to the sensitivity elastoplastic problem with the only difference that
in the latter, design parameters appear in both the quadratic and the linear term.

The formulated quadratic optimization problems can be effectively treated numerically
by employing a quadratic optimization method and, in particular, the Hildreth-d'Esopo
algorithm which has been described in detail by Kunzi and Krelle (1962). This solution
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Fig. 1. On the continuous problem and the forms of k ( . ).

procedure is easily programmable and computationally efficient for the numerical treatment
of the problem under consideration. The range of the applicability and the effectiveness of
the proposed method are illustrated in the last part of the paper by means of two numerical
applications.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

2.1. The continuous problem
An elastic body n with boundary r made up of three nonoverlapping parts r u, r F and

r s is considered in an orthogonal cartesian system OXIX2X3' On r u (respectively r F) the
displacements (respectively the surface forces) have given values Vi (respectively F,), whereas
on r s, unilateral contact boundary conditions hold (Fig. Ia). On r s, frictionless contact
type is assumed and, in addition, as positive normal direction, the one directed outwards
of the boundary is taken into consideration. The unilateral contact conditions with respect
to an elastic support are expressed in the following form:

(I)

(2)

where u'v (respectively SN) denotes the normal (with respect to the boundary) displacements
(respectively reaction forces) on r s and k(UN) is a nondecreasing function. These relations
are illustrated in Fig. 1b, whereas Fig. Ic and d correspond respectively to unilateral contact
with a linearly elastic and with a rigid support.

Assuming that strains and displacements are small, the problem under consideration
consists of the equation of equilibrium, the compatibility relations, the constitutive law
relating stresses to strains and the boundary conditions holding on the boundary r. We
define a field X* of strains and displacements as being kinematically admissible if it satisfies
the compatibility relations and the kinematical boundary conditions on r u and on r s.
Volume forces are denoted by Ph and actual strains and displacements at the position of
equilibrium by euand Ui, respectively. The differences (et-e,J and (ut-uJ represent the
kinematically admissible variations of the respective variables. The stress field obtained
from et by means of the elasticity law is denoted by at. Splitting ut into its positive and
negative parts defined by the forms

and

* u,t+ Iutl
UN+ = 2 (3)
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(4)

which are non-negative quantities, the variational equality

(5)

expressing that the virtual work of the internal forces is equal to the virtual work of the
external forces for the body Q, combined to the inequality

r (SNi(Uti-UNJ+k(UN+)(Ut+ -UN+)) dr ~ 0 VUtiEX*,Jrs

(6)

holding on r s, yields by means of the boundary conditions on r £, the variational inequality

L crt(St-Si) dQ- Lp;{ut-UJ dQ+

r k(uN+)(ut+-uN+)dr- r Fi(ut-uJdr~O VutEX*. (7)Jrs JrF

Applying the method of special variations, it has been proven that variational inequality
(7) yields the equation of equilibrium and the boundary conditions on r s and on r F (see
e.g. Panagiotopoulos, 1975). In this sense, the latter inequality completely characterizes the
position of equilibrium of the body Q. From the standpoint of mechanics, variational
inequality (7) expresses the principle of virtual work in its inequality form for the body,
having taken into account the unilateral boundary conditions. It has been also proven that
at the position of equilibrium any solution of the variational inequality problem (7) min­
imizes over X* the potential energy of the body given by the form

(8)

where K 0, due to the monotonicity of kO, is a convex function defined by the following
integral:

(9)

Conversely, it has been proven that any solution of the quadratic optimization problem
(8) satisfies the variational inequality problem (7). A dual approach with respect to stresses
leading to equivalent results can be also employed. In this case, a variational inequality
problem expressing, from the standpoint of mechanics, the principle of complementary
virtual work is formulated. The latter gives rise to a quadratic optimization problem of the
complementary energy of the body Q (see for example, Panagiotopoulos 1975, 1976, 1985).

2.2. The discrete problem
The present section deals with the mathematical description of the separation problem

of bolted steel column-to-column connections in discrete form by applying the previously
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Fig. 2. A typical bolted steel column-to-column connection.
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presented theory. A typical bolted steel connection is first considered (Fig. 2). In this
connection, under certain loading conditions, the endplates tend to separate. In this case,
construction practice and laboratory experience do also confirm that contact surfaces
between joint members tend to separate. Indeed, the stress distribution along the bolts,
which are symmetrically located about the axes of symmetry, is very uncertain. It is
therefore, obvious that more elegant numerical approaches need to be applied for separation
zones on the adjacent fronts of the connection, as well as stress distribution along the bolts,
to be accurately defined.

In the sequel, a method for the numerical simulation of the structural response of such
bolted steel splices is first presented. As has been previously stated, since on the detached
regions between the contact fronts no reaction forces appear, whereas contact reactions
appear on the active contact regions, the development of the separation phenomenon
significantly affects the response of the steel connection. To begin with, the connection is
discretized by means of an appropriate finite element scheme. In particular, plate elements
are used to simulate the behaviour of endplates, whereas the separation conditions holding
on the contact interface are realized by means of one-dimensional elastic contact elements
(elastic couplers of infinitesimal length) connecting the adjacent nodes of the contact fronts.
The mechanical behaviour of the contact elements simulating the possibility of separation
of the adjacent nodes of the contact fronts are mathematically described, for instance for
the ith contact element, by means of the following law:

(10)

(11)

where [uz(i)] denotes the relative displacements along the z-axis between the upper and
lower splice plate, and Rz(i) the respective reaction force. By means of relation (11), it is
stated that if the region between the splice endplates connected by the ith spring are in
contact, then the reaction force does exist on the contact region, whereas relation (10)
expresses that if separation phenomena occur, reaction is equal to zero. It is also assumed
that the response of the steel connection under investigation is not affected by any friction
effects (frictionless type of contact). Assuming that the lower column flange can be con­
sidered rigid (i.e. exhibiting zero z-axis displacements), then the previous separation con­
ditions (10),(11) can be put in the form

(12)

(13)

where uz(i) denotes the z-axis displacements of the splice endplate in the neighbourhood of
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the ith contact element. Assembling relations (12), (13) in matrix terms for all the m contact
elements, the following linear complementarity problem (L.c.P.) is formulated:

(14)

where bold letters denote vectors and matrices, and superscript T denotes transposed vectors
or matrices. This L.C.P. (14) completely describes in a quasi-static way the development of
the separation phenomenon between the column endplates of the connection. We note also
that the formulated L.c.P. (14) holds on this part of the boundary of the discretized steel
connection, where unilateral contact conditions hold. Applying now the stiffness method
to the simulation of the structural response of the discretized connection, the following
matrix equation is obtained:

Ku=P, (15)

where K is the stiffness matrix of the discretized connection, u the displacement vector for
the whole structure, including vector Un and P the load vector. As has been proposed by
the authors (see e.g. Abdalla, 1988, and Baniotopoulos et al., 1992), the problem of
accurately defining the development of the separation zones between column endplates is
completely described by the following quadratic programming problem (Q.P.P.):

(16)

where A (respectively b) is an appropriately chosen transformation matrix [respectively
vector describing the restrictions imposed by the inequalities (12, 13)]. The Q.P.P. (16)
expresses, from the standpoint of mechanics, the principle of minimum potential energy
for the steel connection at the state of equilibrium. The actual displacements of the con­
nection plates caused by the external loading, as well as the active contact and the separation
zones between the members of the connection, can be accurately defined by solving the
formulated Q.P.P. (16). As has been previously noted for the continuous problem, a dual
approach can also be employed for the treatment of the discrete problem. Such a dual
approach equivalently gives rise to a quadratic programming problem of the same type,
where stresses are the unknown variables appearing in the quadratic term and the con­
straints concern the equilibrium equation and the reaction forces appearing on the end­
plates, i.e.

(17)

where G (respectively Fo) is the equilibrium (respectively flexibility) matrix of the steel
connection and s (respectively eo) the stress (respectively initial strain) vector. The Q.P.P.
(17) expresses, from the standpoint of mechanics, the principle of minimum complementary
energy for the steel connection at the state of equilibrium.

3. THE SENSITIVITY ANALYSIS PROBLEM

In order to obtain sensitivity analysis results for the structural response of the steel
connection at hand, the unified approach for sensitivity analyses of unilateral problems for
discrete and continuous structures proposed by BendS0e et al. (1985) is now applied. This
way, the variation of the structural behaviour of the connection subjected to variations of
its material and geometrical characteristics or loading, being a critical factor in redesigning
or optimizing the shape of the joint, can be completely described.

As previously mentioned, the appearance of the inequality constraints due to the
unilateral contact phenomenon, leads to the formulation of an inherently nonlinear and
nondifferentiable problem, where only directional sensitivities can be defined. Within a
functional analysis framework, using modern analysis techniques combined to the minimum
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principles of potential and complementary energy of structures, sensitivities have been
obtained in a general abstract setting. These sensitivity analysis results have also been
extended to cover the analysis of discrete structures or structures numerically simulated by
finite element models. In particular, sensitivity results have been obtained for structures with
unilateral boundary conditions by first formulating and solving the quadratic optimization
problem expressing from a mechanical point of view the principle of minimum potential or
complementary energy for the discretized connection and then, relating the solution of the
initial analysis problem to this one of a related quadratic optimization problem involving
the same stiffness matrix, but different load term and different set of constraints.

We consider first the quadratic optimization problem (16) which describes the struc­
tural response of the steel connection written in the following form:

n = min {~KijUiUj-P;UiI akiui";; bk (i = I, ... ,n; k = I, ... ,m)}, (18)

where the usual summation convention holds over the repeated matrices and K;j is a family
of symmetric matrices that are uniformly positive definite with respect to the design par­
ameter r that belongs to the interval [0, rj with r j > O. Loading P; and quantities aki and bk
that define the unilateral contact restrictions on the connection endplates take on each node
a given value for i = 1, ... , n; k = 1, ... , m. Next we assume that the unilateral constraint
set is nonempty and denote by u', the unique solution of problem (18). Then, the Kuhn­
Tucker conditions, i.e. the necessary conditions for u' to be the unique solution of problem
(18), are written in the form

and

1'k=0 if akiu;<bk (i=I, ... ,n; k=I, ... ,m)

1'k?0 if akiu;=bk (i=I, ... ,n; k=I, ... ,m),

(19)

(20)

(21)

where l'k are the respective Lagrange multipliers which express, from a mechanical point of
view, the distribution of reactions on the active contact regions of the connection endplates
having as consequence the development of prying action phenomena; the latter give rise to
local separation phenomena between the two column endplates.

We define next the set V(UO) of the endplate nodes which are in contact [i.e. the set of
active constraints of the Q.P.P. (18)]. The sets Vo(UO) and VI (UO) corresponding to the sets
of active constraints respectively with zero and nonzero Lagrange multipliers are defined
as follows:

(22)

(23)

and

(24)

By defining now the sets:

(25)

and

SAS 32-2-H
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(26)

and taking into account relation (19) that also holds for the basic (initial analysis) solution
multiplied by Vj, i.e.

(27)

where superscripts 0 denote vectors and matrices corresponding to the basic solution of
problem (18) for r = ro, we obtain the set

By this mathematical formalism, possible contact and separation zones on the endpla­
tes are defined, excluding the possibility of appearance of a set of nodes where both z-axis
reactions and displacements are equal to zero; these set of nodes would be points of
irregularity in the solution of the sensitivity problem and would also lead to erroneous
results.

A theorem already proved for sensitivity analysis problems (Bends0e et aI., 1985) is
next applied. Assume that

K' I' (Kij-Kg)
ij = 1m

r

where

(P' _pO)
and p; = lim i i with r~O+.

r

Then, for r positive and small enough,

ur = UO +ru' +0 (r),

with

110 (r)11
r--+O

(for r ~ 0) and u' is the solution of the following quadratic programming problem:

(29)

In the case that V(UO) = VI(U~, relation (29) holds in the following form:

ur = UO ±ru'± =+= OCr), (31)

for r belonging to the open interval ( - rf' + rf ) and rf positive and small enough. Here u'±
is the actual solution of the problem

and in general u'+ f= - u'_ confirming that the problem is not differentiable, but only
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directionally differentiable. Note that the so-called first-order necessary condition recently
proved for the problem at hand reads

(33)

where

I" = lim (l,,-l2) for r --+ 0+ and kE V(UO).
r

Since problem (30) involves the same stiffness matrix with the initial analysis problem (I8),
sensitivities can be calculated by applying the same solution method applied to the solution
of the initial quadratic programming problem (I8). Obviously, in the case that vectors aki

are linearly independent, Lagrange multipliers

lk-12lk' - -- for r --+ 0+
r

of problem (30) coincide to the reaction forces on the activated contact nodes of the column
endplates being uniquely determined.

4. ON THE ALGORITHMIC TREATMENT OF THE FORMULATED PROBLEMS

In the previous paragraphs the sensitivity analysis problem of steel bolted column
connections has been formulated as a quadratic optimization problem which involves the
same quadratic term with the initial analysis problem. For this reason, since the stiffness
matrix is the same in both the analysis and the sensitivity problem, the stiffness matrix has
only to be assembled once. As is obvious, the same solution method can be applied to the
numerical treatment of both problems (I8) and (30) and, in particular, the Hildreth­
d'Esopo algorithm which is briefly discussed in the sequel for the analysis problem.

For the numerical treatment of the previously formulated Q.P.Ps, the Hildreth­
d'Esopo algorithm is applied, being a typical iterative procedure and having the advantage
of being easily programmable and computationally efficient (see e.g. Abdalla and
Stavroulakis, 1989). As is well known, the Kuhn-Tucker optimality conditions for the
Q.P.P. (I6) can be written in the following form:

Au+y = b (34)

(35)

(36)

where y is a vector corresponding to the unilateral constraints of the problem and f the
vector of reactions on the same constraints. Solving eqn (35) with respect to u, the following
relation is obtained:

(37)

and then, putting

(38)

and
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(39)

relations (34)-(36) can be written as follows,

2Ff-y = -h (40)

(41)

The latter relations constitute the Kuhn-Tucker optimality conditions for the following
Q.P.P.:

(42)

where matrix F is a flexibility matrix defined by eqn (39) relating contact forces to the
corresponding unilateral contact displacements. When the solution of problem (16) exists,
then problem (42) does also have a solution and this is unique. The Q.P.P. (42) can
numerically be treated by means of the Gauss-Seidel method. During the iterative steps
p = 0, 1,2, ... , the following iterative values are considered:

where

f P+ 1 = max{O wp+i}
1 '1'

1 ('-1 h m )p+i _ _ p+ 1 -.: p' _
Wi - - I gijlj + 2 + I gijlJ z-I,2, ... m

gu '~I j=j+l

(43)

(44)

and m is the number of constraints of the problem. Iterations stop when the computed
contact reactions pass the imposed accuracy criteria, i.e. when

(45)

where the symbol 11"11 denotes an appropriately defined norm.

5. NUMERICAL APPLICATIONS

The code BOLT-l based on the Hildreth-d'Esopo quadratic programming algorithm
has been developed and, after the application of an appropriate discretization scheme, the
following numerical examples have been numerically investigated on a Hewlett-Packard
750 RISC Workstation.

The previously presented method has been applied in order to obtain sensitivity analysis
results with respect to splice plate thickness for the design problem of two steel bolted
column-to-column connections. In both numerical examples, modulus of elasticity and
Poisson's ratio for the material of the connections have been taken, respectively, as E = 2.1
107 N cm- 2 and v = 0.30. The first example deals with a steel splice of two columns with
dimensions 60 x 60 x 5 mm (upper) and 150 x 150 x 5 mm (lower). The dimensions of both
splice endplates are 300 x 300 x d mm, where d is the thickness of the plate. Considering as
basic column endplate thickness d = 12 mm, displacements for both the upper and lower
splice plates are calculated by solving the formulated problem (16) by the Hildreth-d'Esopo
algorithm, and the regions of separation and contact are defined accurately (Figs 3 and 4).
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Formulating now problem (30) and numerically treating it with the same algorithm, sen­
sitivity analysis results with respect to the thickness of the connection plates are obtained
(Figs 5 and 6).

The column-to-column steel bolted splice design problem for orthogonal columns
(250 x 150 x 6.3 and 450 x 150 x 10 mm) and orthogonal endp1ates (450 x 700 x d mm) was
investigated next. The basic solution for endplate thickness d = 14 mm is depicted in Figs
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Fig. 5. Sensitivity analysis results with respect to connection plate thickness for the displacements
of the upper splice plate (square section, cross-section I-I).
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Fig. 6. Sensitivity analysis results with respect to connection plate thickness for the displacements
of the lower splice plate (square section, cross-section I-I).
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7 and 8, where separation and active contact zones have been defined. Sensitivity results
with respect to the connection plate thickness concerning the development of regions of
separation on the splice plates are depicted in Figs 9 and 10. In Figs 11 and 12, the variation
of the active contact and separation zones on the contact interface with respect to the
thickness variation of the splice connections for both the previously investigated problems
is depicted.
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